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Abstract-Combined radiation and natural convection in a two-dimensional emitting, absorbing and 
isotropically scattering square medium is studied numerically. The exact integral formulation for radiant 
transport and the momentum and energy balance equations are discretized by the product-integral method 
and finite difference method, respectively. The resulting algebraic equations are solved by a non-linear 
SOR technique, with the Rayleigh number varying from 10 3, lo4 to IO’, and the radiation-conduction 
parameter ranging from 0 to co. The inlluences of radiation-conduction parameter, Rayleigh number and 

other parameters on flow and temperature distributions and heat transfer are discussed. 

INTRODUCTION 

COMBINED radiation and natural convection in enclos- 
ures is important in many areas such as fire spreading 
and building insulation systems. Various pure natural 
convection problems have been investigated by 
numerous experimental and numerical researchers. A 
review paper can be found in Ostrach [1] and a com- 
parative study of various numerical solutions of the 
natural convection in a two-dimensional square cavity 
was given by de Vahl Davis and Jones [2]. Benchmark 
solutions of the latter problem are also available 131. 

Several works are found for the problem of com- 
bined radiation and natural convection in par- 
ticipating media. Larson [4] studied fire-spreading 
processes in buildings using a numerical approach. 
Chang et al. [5] investigated combined radiation and 
natural convection in two-dimensional enclosures 
with partitions. Desreyaud and Lauriat [6] computed 
natural convection and radiation in rectangular 
enclosures using a one-dimensional P- 1 radiation 
analysis. Webb and Viskanta [7] measured the natural 
convection induced by irradiation and compared 
experimental results with the results of an analysis 
based on a spectral one-dimensional radiation model. 
A review paper on this subject was given by Yang [S]. 
Recently, Yucel et al. [9] studied coupled natural 
convection and radiation in a rectangular partici- 
pating medium using finite differences and the two- 
dimensional discrete ordinates (S4 and S8) method. 
They included the effect of enclosure tilt and internal 
uniform sources on the results, but treated only the 
case of black boundaries. Natural convection and 
radiation in a participating medium between con- 
centric cylinders were studied in ref. [lo]. In all these 
works, radiation is found to play an important and 
sometimes major role in heat transfer and fluid flow 
processes. 

In this work, combined radiation and natural con- 
vection in emitting, absorbing, and isotropically scat- 

tering square cavities is studied. The exact fo~ulation 
for radiation is applied and discretized by the product 
integration method (PIM) [Ill. The non-linear suc- 
cessive-over-relaxation (NSOR) iterating scheme for 
combined radiation and convection-conduction heat 
transfer problems [12, 131 is used. Comparisons are 
made with existing work for limiting cases. Influences 
of various parameters on heat transfer, temperature, 
and fluid how are discussed. 

FORMULATION 

Consider a square emitting, absorbing, and iso- 
tropically scattering medium bounded by two hori- 
zontal insulating walls, and two vertical isothermal 
walls at different temperatures, T,,, and T, (T,, > T,), 

respectively (Fig. 1). For simplicity, all the physical 
properties in the system are assumed constant, except 
for the density which varies in the Boussinesq sense. 
The participating medium is assumed gray, and the 
emissivities of the walls are assumed to be the same. 

Scaling the temperature (T) by T,, length (X or y, 
where the -y-axis is in the gravity direction) by L, 
and velocity (u or v) by a/L, the governing Navier- 
Stokes equations in dimensionless stream function- 
vorticity form are 

v2$l= -w 

where Pr is the Prandtl number, Ra the Rayleigh 
number, Rc the radiation-conduction parameter 
defined by 

fW 

(lb) 

UC) 

Re = LaT,3]A 

and V*q, is the radiation energy flux vector, which 
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NOMENCLATURE 

e&! radiative emissive power of medium 

e, radiative emissive power of enclosure 
L side length of the medium 
n inward unit normal vector at r 
Pr Prandtl number 

9C convection heat flux on S 

% radiation flux vector 

;> Qcom,, 
radiation heat flux on S 

scaled total heat flux 
r position vector, (x, y) 

RU Rayleigh number 

Rc radiation-conduction parameter, 
LoT$. 

s boundary of Q 

S, Bickley’s function of n th order 

T temperature 
Th, T, temperatures on hot and cold walls 

W v x- and y-components of velocity. 

Greek symbols 
a thermal diffusivity 

E emissivity 
1, thermal conductivity 
0 Stefan-Boltzmann constant 

optical depth 

; stream function 
vorticity ; albedo for scattering 

: medium. 

relates equation (1) with the radiation transport equa- functions defined by 

tions of integral form [12] 
n;2 

4Qr) - &vWr) = 
S[ 

e -ticosBcos’-’ 8d0 
eg (r’) 

S,(t) = 1 
s 

o 

a 

1 “1~:“~~” dA(r’) + 
s[ 

R = (0, 1) x (0, 1) is the region of the medium, and S 

- &V*qW) W) 
the boundary of R. 

S The boundary conditions are 

- IgEq’(r’) 1 Sdd--‘I) 
cos(r-r’,n’)dl(r’), rER 

T=T,[T,, x=0; O<y< 1 (3a) 

[r-r’1 T=l, x=1; 06~61 Pb) 
(2a) 

qC+Rcq,=O, v=O,l, O<xz< 1 (3c) 

e,(r)- kqs(r) = 
s[ 

eg W) ti = 0, on all boundaries (3d) 
I1 

- & V.q,(r’) 1 
where qC E -iYT/an is the conductive heat flux on the 

S2;:$r”) cos (r’ -r, n) dA(r’) 
wall, and qs the radiative heat flux on the wall. 

In this work, we take T,,/TC = 2 and Pr = 0.71, 

+ s[ es@‘) - 1.E qs (0 
1 

Wd-4) 
S [r-r’1 NUMERICAL METHOD 

x cos (r’ - r, n) cos (r - r’, n’) dl(r’), r E S (2b) 
The medium domain is divided equally into 25 x 25 

square elements, and the four boundaries are divided 
where AXj = -xi -xj (j = 1, 2), and S, are Bickley’s into 4 x 25 equal segments. The nodes are located at 

the centers of each element or segment. An additional 
four nodes lie at the four corners, so there are 27 x 27 

Y 
nodes in total. This mesh number is not large enough 

t insulated for high accuracy modeling for natural convection at 

/ ////////////////, high Rayleigh numbers, but it is large enough for 
accurate radiation modeling. Increasing the number 
of nodes increased the time of solution for the flow 

T,,=2 Tc= 1 equations. 
Equations (1) are discretized by conventional 

centered, second-order finite difference schemes. The 
derivative - dT/& in equation (3~) is approximated as 
a three-point, second-order accurate finite difference. 

X 

Q ‘/////////////////// 
The radiation transport equations (equations (2)) are 

insulated 
discretized using the product integration method with 
piecewise-constant interpolants [ 111. 

FIG. 1. Geometry of the problem. To solve the global non-linear algebraic equations, 
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the non-linear SOR iterating scheme by Chen [ 141 and 

improved by Tan [12] is applied. This technique has 
been successfully used to solve several coupled radi- 

ation and convection (or conduction) problems [lo, 
131. 

To provide convenient scaling of the results, the 
total heat flux on the wall, q,+ Rc qs, is divided by 
l+Rc 

Similarly, we define the scaled radiative and convec- 
tive fluxes as 

4c 
and Qc =--------- 

l+Rc’ 

The convergence criterion used is 

max I$” -I/I”- ’ 1 

max WI 
+max]T”-T”-‘I< 10e5 

where the superscript n denotes the nth iteration. 
All computations were performed on a CDC 170/ 

750 system at the University of Texas at Austin. 

RESULTS AND DISCUSSIONS 

When Th/TC and Pr are fixed, there are five inde- 

pendent parameters in this problem: Ra, Rc, E, w, 
and z. It is difficult to perform complete investigations 
on the effects of all combinations of these parameters. 
Therefore, only trends are discussed. 

Results were obtained at Ra = 103, lo4 and 10’. 
The case Ra = lo6 was also tried, but the accuracy 
was poor due to the coarse mesh. Solutions for the 
limiting case Ra = 0 (i.e. combined radiation and 

conduction) were given in another paper [ 131. 

Influence of radiation on flow and temperature distri- 
butions 

Figures 224 show the influence of the radiation 

conduction parameter, Rc, on flow and temperature 
distributions, when w = 0, E = 1 and z = 1. It is seen 
that when radiation is present, the flow and tem- 
perature distributions are no longer anti-symmetric 
as in the pure natural convection case, due to the 

nonlinearity of the energy equation (equation (1~)). At 
Rc = 1, the temperature gradients are found larger 
near the cold wall than for the pure convection case. 
This indicates that the bulk temperature is increased 
by radiation. In fact, due to the fourth power law of 

(a) Rc = 0 : I) contours at - 1.172, - 1.065(0.1182)0. 

(b) Rc = 1 : $ contours at -0.945, -0.859(0.0955)0. 
FIG. 2. Streamline and temperature contours when Ra = 103. 
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(a) Rc = 0 : II, contours at - 5.102, -4.638(0.5153)0. 

(b) Rc = 1 : $ contours at -6.916, - 6.287(0.6989)0. 

FIG. 3. Streamline and temperature contours when Ra = lo4 

radiation, the temperature at the center of the enclos- 
ure, T(0.5, 0.5), which is 1.5 at the pure convection 
limit should be increased to [( 1 4+24)/2] ‘j4 = 1.7075 
at the pure radiation limit as Rc increases (Fig, 5). 
When radiation is present, the temperature contours 
near both the hot and cold walls are found to be more 
parallel to the y-axis, implying that the heat flux on 
the vertical walls is more uniform. 

In the present problem the flow pattern is directly 

coupled with the temperature distribution in the 
cavity. As Rc increases, the flow field has less influence 
on the temperature distribution, In the limiting case 
Rc = ‘x), the temperature field is independent of the 

flow field (and therefore Ra and Pr), while the flow 
pattern varies with Ra. (Mathematically, for those 
who are interested in dealing with only this limiting 
radiation-induced convection problem, the energy 
equation may be solved first, and the temperature 
distributions obtained are then used to solve the flow 
equations. This is in contrast with solving a forced 

convection problem with temperature-independent 
properties, where the flow equations are solved first.) 
Therefore, the influence of the radiationconduction 
parameter Rc on the flow field is significant. For ex- 
ample, as Rc increases from 0 (pure convection) to 1, 

the cores are pushed from the center to lower right 

when Ra = 10’ and 104; greater change is found at 
Ra = lo’, where the original two separate cores are 

combined into one. 
When the Rayleigh number increases or decreases, 

the influence of Rc on the maximum [$I, and hence the 
total circulating mass rate, is not monotonic. When 
Ra = 1 03, the maximum 191 (= 1.184) is greater than 
the maximum ]$] (= 0.5625) for pure radiation ; and 

when Rc increases, the maximum 11) 1 decreases mono- 
tonically (not shown here). However, when Ra = 104, 
a different pattern of Rc vs maximum ]$] line was 

observed. The maximum ]$] at Rc = cc is greater 
than at Rc = 0 ; and as Rc increases, maximum I$] 
increases first until Rc = 1.7, then it decreases (Fig. 

6). When Ra = lo’, on the other hand, the maximum 
]$I simply increases as Rc increases. These results are 
due to the complex interactions between the 
fluid mechanics and the combined radiative and con- 
ductive transfer. It is not clear that any general con- 
clusions can be drawn which will apply, for example, 
at different optical thicknesses. A similar phenom- 
enon was found for combined radiation and natural 
convection in an annulus between concentric 

cylinders [IO], 
Figure 7 depicts the y-component velocity on the 

horizontal mid-plane when Ra = 104. It is seen that the 
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(a) Rc = 0 : $ contours at - 9.752, -8X65(0.9850)0. 

(b) Rc = 1 : t,b contours at - 18.676, - 16.979(1.8865)0. 

FIG. 4. Streamline and temperature contours when Ra = 105. 

line is smoothened when the system is more radiative. butions on the hot wall (x = 0) and the cold wall 

The line with the largest magnitude is found at Rc = 1. (x = I), respectively, when Ra = 10”. Since in the 
pure radiation case the heat flux on each wall is sym- 

Influence of radiation on heat transfer metric, the wall flux distributions are more symmetric 

Figures 8(a) and (b) show the influence of the radi- as the radiation tends to be more important. This was 

ation-conduction parameter on heat flux distri- also predicted in connection with the results of Fig. 5. 
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FIG. 6. Influence of radiation on maximum I$1 when 
FIG. 5. Effect of radiation on centerline temperature dis- Ra = 104. Dashed lines are for pure convection (left) and 

tribution, when Ra = IO'. pure radiation (right) limits. 
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FIG. 7. Influence of radiation on vertical component velocity 
when Ra = 104. 

It is also noted that the fluxes are not constant in the 
pure radiation situation. This indicates the necessity 
to apply two-dimensional radiation models for the 

present problem. 
Figure 9 shows the percentage radiation flux to the 

total heat transfer, when Ra = 104. The influence of 
radiation on heat transfer on the hot wall is more 
significant than on the cold wall, due to the fact that 
the radiation emissive power is proportional to T4. 
At Rc = 0.4, the total radiative and convective fluxes 
are about the same. Figures IO(a) and (b) show the 
radiation fluxes on the upper and lower insulating 
walls, respectively. 

It is interesting to find that when radiation is 
present, the isotherm lines are no longer orthogonal 
to the insulating walls as in the pure convection cases 
(Figs. 9(a) and (b)), indicating that both the radiative 
and conductive fluxes are nonzero on the insulating 
walls, while their total contribution is null. This is 
reasonable considering equation (3~). If a one-dimen- 
sional radiation model is used when both the radiation 
and convection are important, an unreal zero tem- 
perature gradient on the insulating walls is obtained. 
This shows the necessity of using a two-dimensional 
radiation model for the present problem, despite the 
fact that only a one-dimensional model is needed in 
the pure radiation case. 

It is interesting to find that for the range of par- 
ameters examined in this work, the simple super- 
position for total heat flux using the flux for pure 
convection and pure radiation 

e, 
comb 

(Rc) = q,(Rc = O)+Rcqr(Rc = ml 
l+Rc 

gives an excellent approximation (Fig. 11). Thus 

q,(Rc = 0)+ Rcq,(Rc = a) z q,(Rc)+ Rcq,(Rc). 
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FIG. 8. Influence of radiation on heat flux distributions. when 
Ra = 104: (a) hot wall; (b) cold wall 
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FIG. 9. Influence of radiation%onduction parameter on 
percentage radiation fluxes on hot and cold walls, when 

Ra = 104. 
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FIG. 10. Influence of radiationxonduction parameter on 
radiation flux distributions on insulating walls, when 

Ra = IO“: (a) upper wall; (b) lower wall. 

7. 5, I 

RC 

FIG. 11. Comparison of total heat flux by using the simple 
superposition formula (short dashed line) with the actual 
results (solid line). The long dashed lines are pure convection 

and radiation limits. Ra = 104. 

Influence of optical properties on heat transfer 
The influences of optical thickness, wall emissivity, 

and scattering albedo on heat transfer and fluid flow 
in the cavity were also studied for Ra = 10“ and 
Rc = 1. The major results are listed in Table 1. 

The influence of scattering on heat transfer is found 
to be very slight. In fact, when the scattering albedo 
varies from 0 to 0.9, the change in the scaled hot wall 
flux is only 0.0179, or 0.4%, while the change in the 
maximum stream function is 0.82, or 11.7%. 

On the other hand, the influence of wall reflection 

on heat transfer is great : as the emissivity of the walls 
drops from 1 to 0.1, radiation fluxes on both the hot 

wall and the cold wall are greatly decreased to about 
11 and 8%, respectively ; the convective fluxes remain 
of the same order, resulting in a large change in the 
total flux (from 4.4987 to 1.9735). However, the maxi- 
mum stream function is reduced by only 18%. 

The effect of increasing optical thickness (from 0.1 
to 10) is more significant. As we can see from the 
table, since the radiation fluxes are reduced drastically 
(as expected from radiation transfer theory), while 

the convection fluxes are almost unchanged, the total 
combined dimensionless heat flux on the wall is 

reduced from 6.0005 to 2.0549. 

Numerical accuracy and efficiency 
The major numerical errors of the present solutions 

are caused by finite difference truncation errors for 
the Navier-Stokes equations, and interpolation errors 
for the radiation transport equations. In pure con- 
vection cases, the present results give average heat 
fluxes of 1.118 for Ra = lo’, 2.264 for Ra = lo4 and 
4.693 for Ra = 105, compared with benchmark solu- 

tions 1.118, 2.243 and 4.519 [3]. For pure radiation, 
the error by the present node number (25 x 25) com- 
pared with 45 x 45 mesh results is less than 0.2%. We 
conclude that the error in this computation is mainly 
caused by the finite difference scheme, and is expected 
to be less than 2% when Ra < IO4 and less than 5% 
when Ra = 105. Better results may be obtained if a 

higher order finite difference scheme or a more dense 
grid is used, especially near the boundaries. 

The computing time for each case depends on 
the choices of initial guesses and the relaxation 
parameters. However, even with simple choices, the 
present method does not require a long time to achieve 
convergence. Generally, the time to complete the solu- 
tion to a combined heat transfer problem requires l- 
2 times the total time to compute a pure convection 
problem (with the same Ra) and a pure radiation 
problem separately. For example, when Ra = 104, 
Rc= l,s= l,z= lando=O,iftheinitialguesswas 
the pure convection data for Ra = 103, the relaxation 
parameters were t(r = 0.7, CI, = 0.4 and c($ = 0.7, and 
the convection-radiation iterating ratio L (refer to ref. 
[ 121) was 40, then the total time for pure convection is 
214 s, for pure radiation, 234 s, and for combined 
convection and radiation, 464 s (which is about 
the same as 214+234 = 448 s) on the CDC 17Oi750 
computer. 

CONCLUSIONS 

In this paper, combined radiation and natural con- 
vection in a square cavity was studied by a numerical 
method that incorporates two-dimensional radiative 
transfer. The following conclusions are obtained : 

(1) The presence of radiation will increase the bulk 
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Table I. Influence of scattering, reflection and optical thickness on heat transfer and maximum stream function. Ra = IO4 
and Rc = 1 

Hot Cold Upper Lower 
E w z Qr Qc Q QT Qc Qr Qc Qr Q< max Ml 

1 0 1 3.6039 0.8948 4.4987 -2.7646 - 1.7380 0.0865 -0.0865 -0.3434 0.3433 6.9885 
1 0.5 1 3.6484 0.8362 4.4846 -2.8689 -1.6285 0.1125 -0.1125 -0.4419 0.4419 6.7032 
I 0.9 1 3.6457 0.8350 4.4808 -3.0049 -1.4889 0.1314 -0.1313 -0.5982 0.5982 6.1685 

0.5 0 1 1.8793 1.2208 3.1001 - 1.2604 - 1.8438 0.0567 -0.0564 -0.1942 0.1944 6.3055 
0.1 0 I 0.4117 1.5618 1.9735 -0.2176 - 1.7552 0.0246 -0.0253 -0.0386 0.0387 5.7060 

1 0 0.1 5.1027 0.8978 6.0005 -4.4190 -1.5853 0.1244 -0.1245 -0.6284 0.6284 6.0901 
I 0 10 I. 1596 0.8953 2.0549 -0.4917 - 1.5536 0.0035 -0.0034 -0.0329 0.0330 7.8153 

temperatures of the fluid, and may have a significant 
influence on the fluid flow and temperature distri- 
butions. The influence of radiation on the total cir- 
culating mass varies at different Rayleigh numbers. 

(2) All radiation parameters studied in this paper, 

except for the scattering albedo, have a significant 
influence on the heat transfer. 

(3) To accurately simulate the temperature vari- 
ations near the insulating walls, a two-dimensional 
radiation model is necessary. 

(4) The numerical method used here is efficient. The 
results are quite accurate compared with benchmark 
solutions in limiting cases. To obtain more accurate 
results, a higher order finite difference scheme or more 
grid points should be applied. 
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RAYONNEMENT ET CONVECTION NATURELLE COUPLES DANS UN MILIEU 
BIDIMENSIONNEL CARRE 

R&sum&On etudie numeriquement le rayonnement et la convection naturelle couple dans un milieu 
bidimensionnel carre qui &met, absorbe et diffuse isotropiquement. La formulation integrale exacte pour 
les equations du transfert radiatif et des bilans de quantite de mouvement et d’tnergie sont disc&is&es par 
une methode produit-inttgrale et aussi une methode aux differences finies. Les equations algebriques 
resultantes sont resolues par une technique SOR non lineaire, avec le nombre de Rayleigh variant de lo’, 
IO4 a lo5 et le parametre rayonnement-conduction allant de zero a l’infini. On discute les influences de ces 
paramttres et d’autres sur les distributions de vitesse et de temperature ainsi que le transfert thermique. 
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STRAHLUNG UND NATtiRLICHE KONVEKTION IN EINEM ZWEIDIMENSIONALEN 
STRAHLUNGSFAHIGEN QUADRATISCHEN MEDIUM 

Zusammenfassung-Die kombinierten Vorglnge von Strahlung und natiirlicher Konvektion in einem 
zweidimensionalen, emittierenden, absorbierenden und isotrop streuenden, quadratischen Medium werden 
numerisch untersucht. Die exakten integralen Gleichungen fiir den Strahlungstransport und fur das Impuls- 
und Energiegleichgewicht werden mit einem Produkt-Integral-Verfahren bzw. mit einem Finite-Differ- 
enzen-Verfahren diskretisiert. Es ergeben sich algebraische Gleichungen, die mit einem nichtlinearen SOR- 
Verfahren gel&t werden, und zwar fiir die Rayleigh-Zahlen lo’, 10“ und lo5 sowie den gesamten Bereich 
des Strahlungs-Leitungs-Parameters von 0 bis co. Die Einfliisse des Strahlungs-Leitungs-Parameters, der 
Rayleigh-Zahl und anderer Parameter auf die Verteilung von Geschwindigkeit und Temperatur sowie auf 

den Warmeiibergang werden diskutiert. 

B3AHMOCBII3AHHbIE H3JIY9EHHE II ECTECTBEHHAJI KOHBEKHHII B ABYMEPHOfi 
AKTHBHOm CPEAE KBAJJPATHOR @OPMbI 

AmsoT~ZIricneuuo peuteiia myMepttan sanaqa 0 con~ecruoM neficremi ri3n~etnin ri ecrecrseurrofi 
trounexumi B wsny9aw34eii, nornowalowefi ti ~30~pon~o pacceasaloulefi Cpene, HaxorUrrueiicn B 

IIOJIOCTH KBWpaTHO,-0 ‘WEHHP. ,@CK,WHbK? ~ilJ,OTH TO’IHOrO tiHTe~WIbHOr0 OnHCaHHR paLWa”,‘IOH- 

HOI.0 tlept?.HOC+ iI TaKXN? )‘paBHeHAii 6a~1arica HMnyJlbca H 3HeprHH IIOJIy’leHbi C IlOMOlUbro MCTOAOB 

HHTWpLNbHbIX IIpOH3BeAeHHii Ei KOHe’IHblX pa3HOCT.Sii. &IlK ~IlleHH~ ~3j’JlbTHp)‘KWHX anre6pawecuix 

)‘paBHeHAii IIpHBJIVieH HWlHHefiHblii MeTOA SOR, npH’teM YHCJIO P3JleK H3MeHKJIOC.b B AEiallZUOHe OT I@, 

lo4 A0 lo’, a pe%AHaAtlOHHO-KOHA,‘KTHBHbIii na,,aMeTp 83MeHlmCR B ASEUla3OHe OT 0 A0 Co. 06C,?K- 

naeTc5i wniXHbie pamiatuiomtc+xorrnyKrriBHoro napahierpa, wicna Psnen a AP~~HX napahteTpoe Ha 

penal TeqeHsin, TehtnepaTypHoe none u rennonepericc. 


